E-Waste Recycling; Its Impact on Health & Environment A Case study of Pakistan

Muhammad Jawad Khan

Assistant Professor,

Department of Economics,

BUITEMS

Contents

Introduction

>Impacts on Environment

➢Impacts on Our Health

Methodology

➢ Results

Conclusion

References

Precious metals in e-waste

Electronics	Copper (% by	Gold	Silver (PPM)	Palladium	
	weight)	(PPM)		(PPM)	
Television(TV)Board	10%	20	280	10	
Portable Audio Scrap	21%	10	150	4	
Personal Computer	20%	250	1000	110	
(PC) Board					
DVD Player Scrap	5%	15	115	4	
Mobile Phone	13%	340	3500	130	
Portable Audio Scrap	21%	10	150	4	

(1) Source: Umicore Precious Metals Refining. Metals Recovery from e-scrap in a global environment. Geneva, September 7 2007.

http://archive.basel.int/industry/sideevent030907/umicore.pdf

BURDEN OF E-WASTE

During the Period 1994-2003 500 Million PCs were discarded

- Containing 0.7 Million tonnes of lead,
- 0.0024 Million tonnes of cadmium and
- 287 tonnes of mercury

(Smith, Sonnenfeld & Naguib Pellow, 2006).

A study reveals that 1.7 million tons of electronic waste produced domestically in China, which is equal to 1.7 kg of E-waste per capita in 2006. Another study concludes that developing nations' import of E-waste causes them a net loss of \$108 million ➢ Developed Nations ship their E-waste to developing Nations because of our poor regulations over waste disposal(BAN, 2002; Wei et al., 2012).

Source; [UNEP], DTIE, 2007a)

Why E-Waste is Growing?

Rapid changes in Technology.

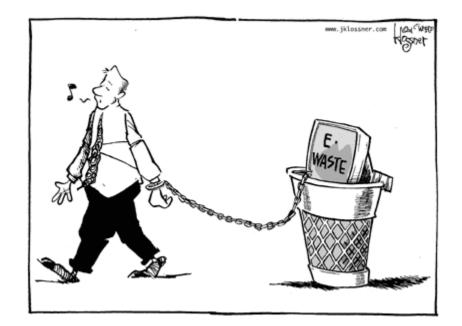
> Falling Prices (Competitive Tech).

➢Irresponsible Company Manufacturing.

Lack of Proper Knowledge on its risks and disposal.

> Repairs cost more than new products. (Not Upgrading)

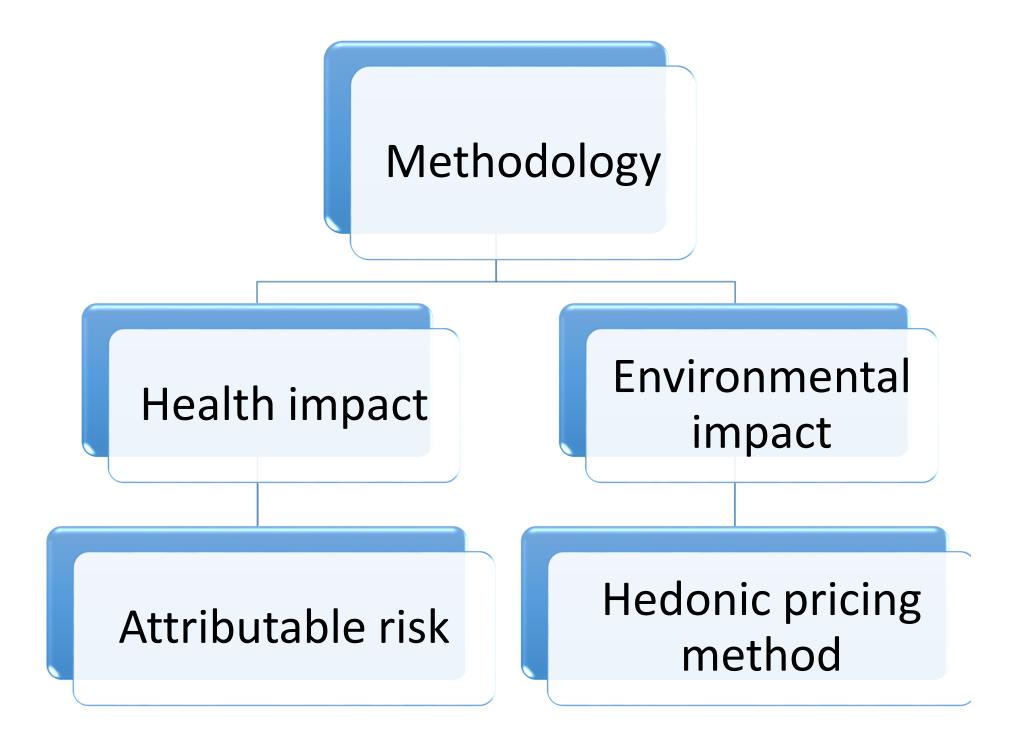
Planned Product Obsolescence.


Environmental Impact

 Contamination of Ground Water: One Mobile Battery pollutes 600 m³ ground water. (Lepawsky & McNabb, 2010)

•Air Pollution: Toxic dioxins & Furans (Comes from burning plastic cables and PVC materials.) (Prakash & Manhart, 2010)

•Soil Pollution: Melting Computer Chips (Nordbrand, 2009; Xu et al, 2015; Tsydenova & Bengtsson, 2011)



Impacts on Our Health

Hazardous materials

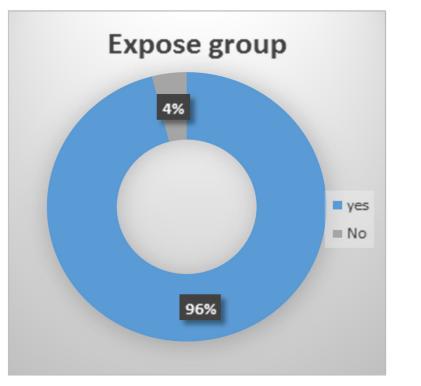
(Hazardous)	Health effects				
Lead (PB)	 Damage to nervous system and kidney Affects brain development of children 				
Cadmium (CD)	Accumulates in kidney and liverCauses neural damage				
Mercury (Hg)	Chronic damage to the brainRespiratory and skin disorder				
Beryllium (Be)	 Lung cancer 				
Barium (Ba)	 Muscle weakness; Damage to heart, liver and spleen 				
	 Asthma DNA Damage barti T. (2011) E-w aste scenario in India. its management and implications. Environmental 				

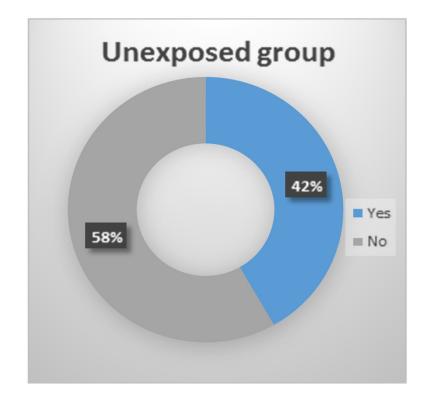
source :Wath, S. B., Dutt, P. S., & Chakrabarti, T. (2011). E-w aste scenario in India, its management and implications. Environmental

Attributable Risk

- "The Attributable Risk indicates the number of cases of a disease among exposed individuals that can be attributed to that exposure"
- (MacMahon and Pugh, 1997; Kaelin, 2004; Rosen, 2013; & Kanchanaraksa, 2008)

Attributed risk percent

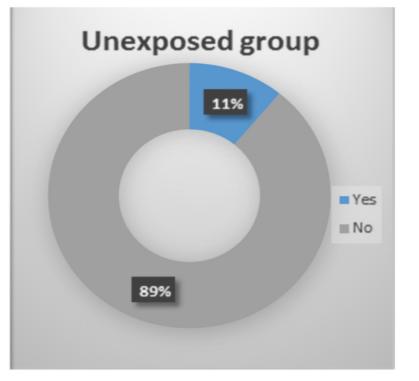

- [Incidence (exposed) Incidence (unexposed)] ÷
- Incidence (exposed)


The attributable risk percent can calculated by multiplying above expression by 100.

Where

- Ae% = Attributable risk percent
- *Re* = *Absolute risk among exposed group*
- *Ro* = *Absolute risk among unexposed group.*

Shortness of breath

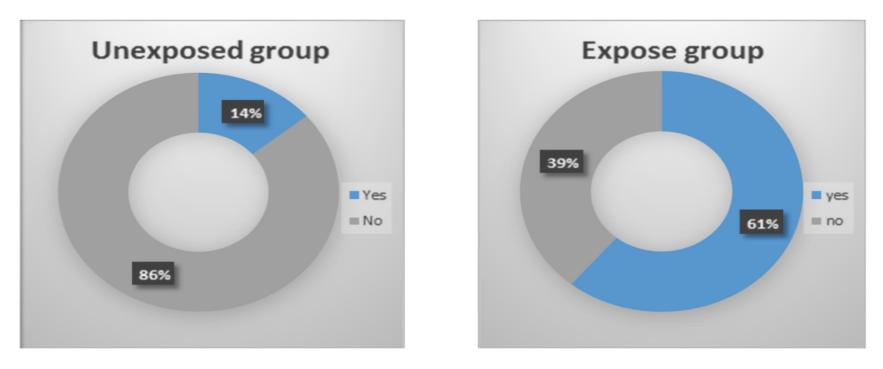



Calculating for attributable risk percent:

Ae = *56* %

56 % of shortness of breath is attributable to exposure.

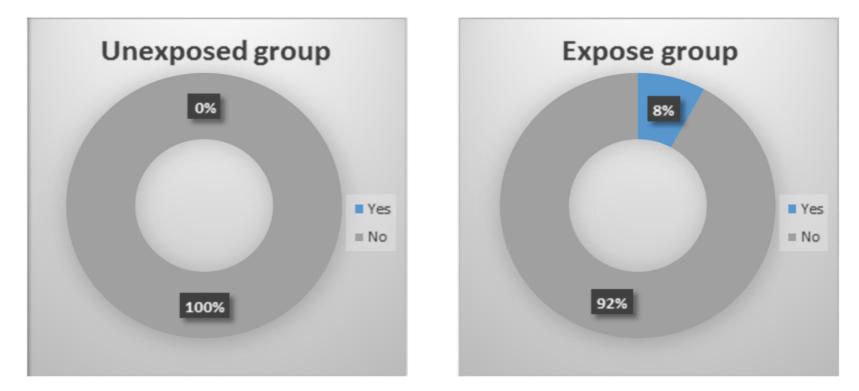
Skin disease



Ae = 78 %

78 % of skin disease is attributed to exposure.

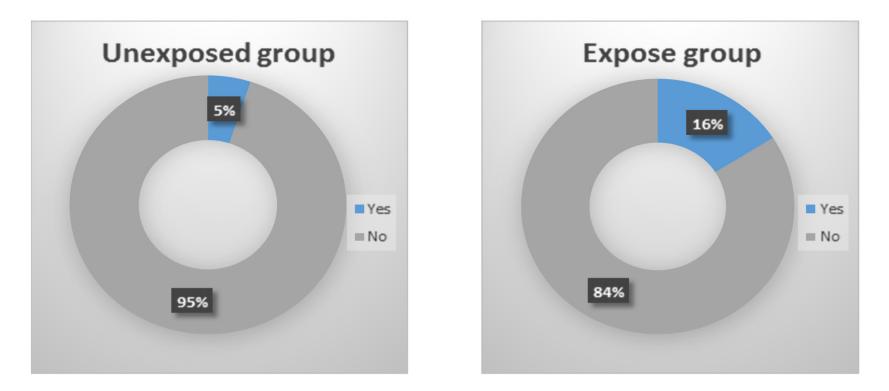
Infections of throat, chest, ear and fever



Ae = 77 %

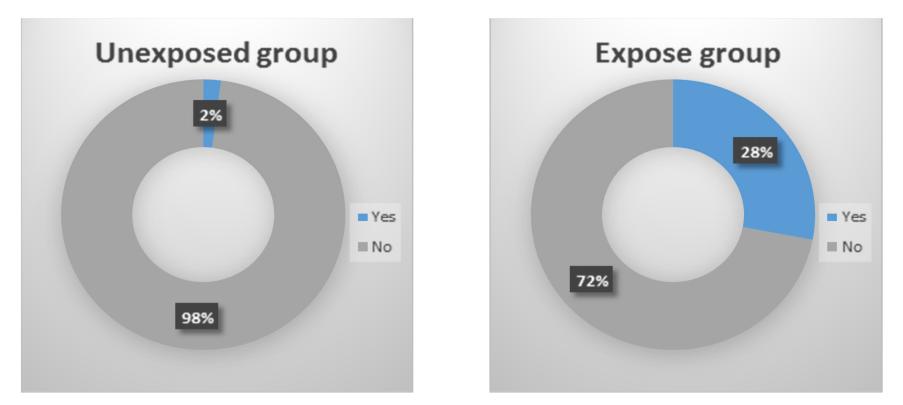
77 % of risk of throat, ear, chest and fever is attributable to

exposure.


Diarrhea

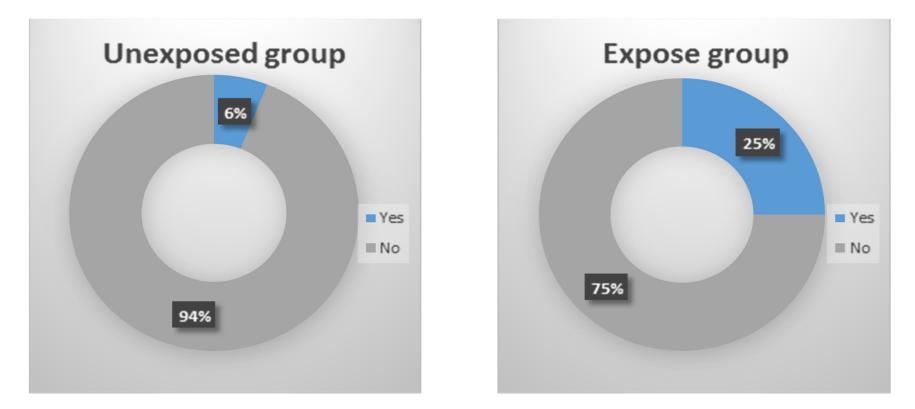
Ae = 100 %

100 % diarrhea is attributable to exposure of E-waste.


Heart diseases

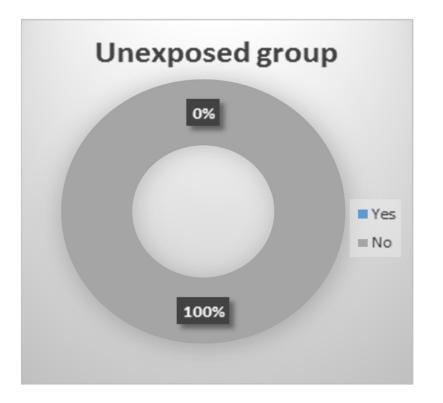
Ae = *69* %

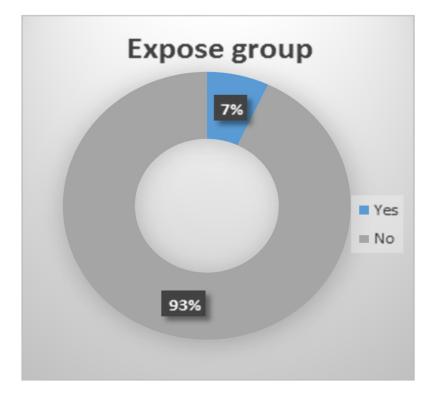
69 % of heart diseases is attributable to exposure.


Liver diseases

Ae = 93 %

93 % of liver diseases are attributable to exposure.

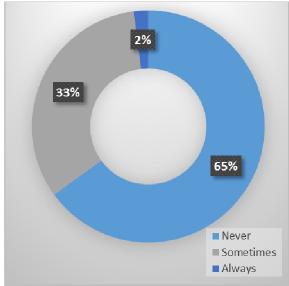

Kidney infections

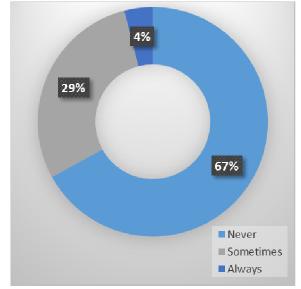


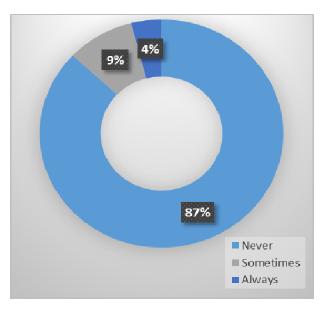
Ae = 76 %

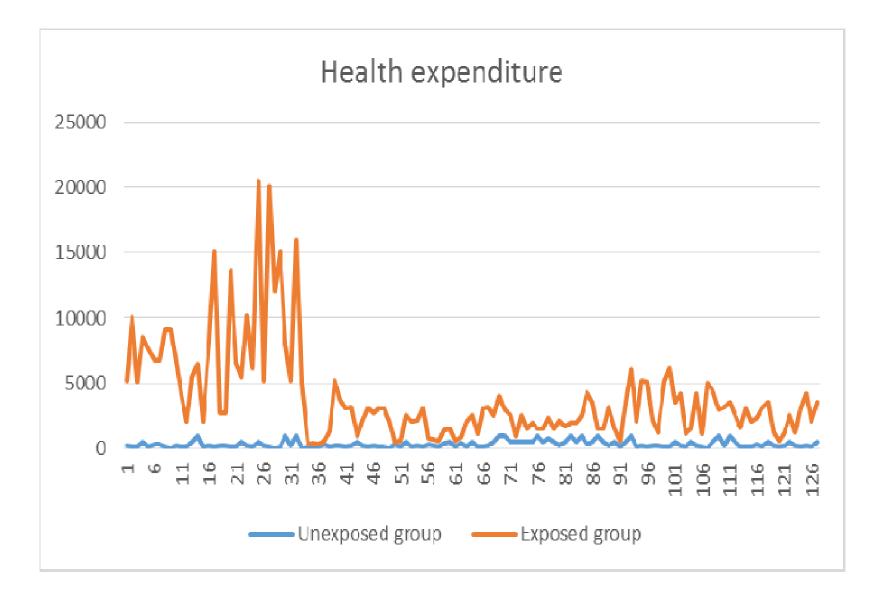
76 % of risk of kidney diseases is attributable to exposure.

Lung infection






Ae = 100 %


100 % lung infections are attributable to exposure.

Gloves, Face mask & overall suits

Environmental Impacts

Non-Market goods Valuation method Hedonic Price (focus on price response)

Environmental quality reflected in market prices (e.g., housing prices)

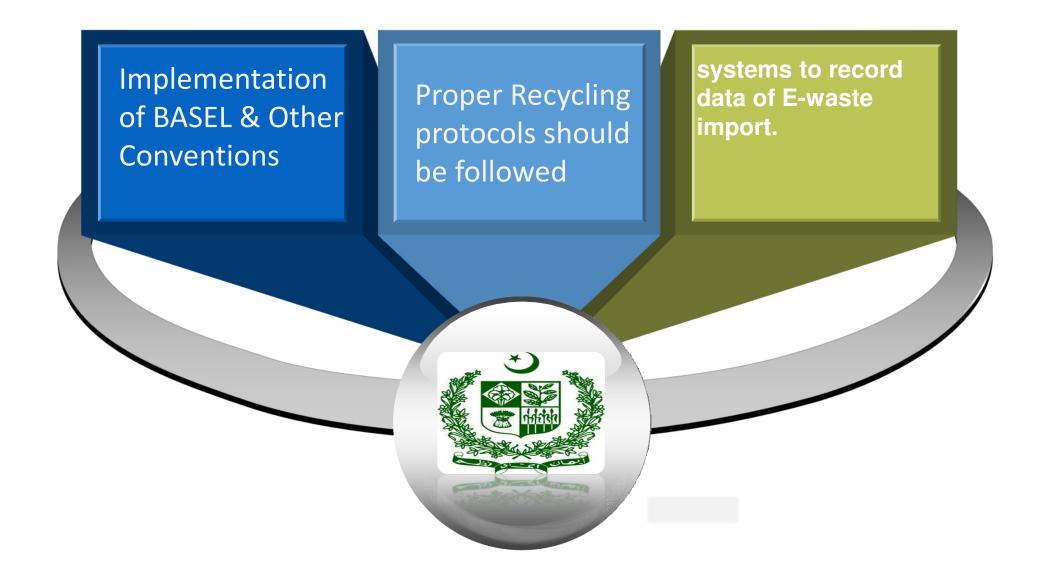
(Lancaster, 1966; Rosen, 1974; Steenland & Armstrong, 2006).

Estimation method

- P = f(H)
- $P_i = f(L, S, N)$
- $lnP = \beta_0 + \Sigma \beta_i L + \Sigma \beta_i S + \Sigma \beta_i N + \varepsilon_i$
- $lnP = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_{18} X_{18} + \varepsilon_i$ where
- $\beta = \partial P / \partial H$

Source: Joseph, M. K. (2010). university of nairobi department of real estate and construction managemnt school of built environment real estate valuation based on hedonic price model Case study of Residential Housing in Nairobi.

Linear regression


Number of obs = 124 F(19, 104) = 19.32 Prob > F = 0.0000 R-squared = 0.6875 Root MSE = .41015

pl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dist	.0750721	.0351857	2.13	0.035	.0052976	.1448466
rooms	.2195357	.0589559	3.72	0.000	.1026239	.3364475
bath	0209974	.0781597	-0.27	0.789	1759911	.1339962
FA	7.84e-06	.0003807	0.02	0.984	0007471	.0007628
BGL	0586185	.0945728	-0.62	0.537	24616	.1289229
BS	.2033445	.090876	2.24	0.027	.023134	.383555
FL	.256448	.1201146	2.14	0.035	.0182562	.4946397
SQ	.2167021	.1077978	2.01	0.047	.0029351	.4304691
age	.0015195	.0041146	0.37	0.713	00664	.009679
IR	8.27e-07	2.45e-07	3.38	0.001	3.41e-07	1.31e-06
sch	0216718	.0214053	-1.01	0.314	0641194	.0207758
hosp	0078619	.0324941	-0.24	0.809	0722988	.056575
POW	.1293654	.0897473	1.44	0.152	0486069	.3073376
CRm	044964	.0890056	-0.51	0.615	2214654	.1315375
TAPm	.1430212	.0847674	1.69	0.095	0250758	.3111183
shop	.0439073	.0197437	2.22	0.028	.0047549	.0830598
forest	0	(omitted)				
EGW	0	(omitted)				
envqua	.1023657	.0956003	1.07	0.287	0872134	.2919447
SW	1558334	.0813741	-1.92	0.058	3172013	.0055345
DS	.1263349	.0799871	1.58	0.117	0322825	.2849522
_cons	2528502	.1956099	-1.29	0.199	6407519	.1350516

Hedonic regression result

• $lnP = -.2528 + \beta_1.0750 + \beta_2.2195 - \beta_3.02099 +$ $\beta_4 7.84 - \beta_5.0586 + \beta_6 0.2033 + \beta_7.25644 +$ $\beta_8.2167 + \beta_9.0015 + \beta_{10}8027 - \beta_{11}.0216 - \beta_{11}$ β_{12} . 0078 + β_{13} . 1293 - β_{14} . 04496 + β_{15} . 04390 + β_{16} . 10236 — β_{17} . 1558 β_{18} . 12633 + ε_i *R-square* = 0.6875

Suggestions and Recommendations for Government

CONCLUSION

This Potential Threat of E-waste must be attended quickly, before it escalates to an unpreventable threat.

 Because management of E waste is costly, it is essential to educate and promote
 research in this matter. ➢ Our estimation of attributable risk clearly showed that workers, working in E-waste are having more disease risk as compared to the controlled group.

Hedonic pricing reveled that ewaste recycling has significant impact on environment.

Overall E-waste cause hazardous possessions, which can be intensified throughout a person's lifetime and across generations

Future research

More quantitative research is needed to Address this issue

Quantitatively project and estimate the flows of E-waste worldwide

...This is Our Only Home.

R

X

20

22

R

x

2

3

30

ß

30

A Green

REFERENCES

Asampong, E., Dwuma-Badu, K., Stephens, J., Srigboh, R., Neitzel, R., Basu, N., & Fobil, J. N. (2015). Health seeking behaviours among electronic waste workers in Ghana. *BMC Public Health*, *15*(1), 1065. <u>http://doi.org/10.1186/s12889-015-2376-z</u>
Brasington, D. M., & Hite, D. (2005). Demand for environmental quality: A spatial hedonic analysis. *Regional Science and Urban Economics*, *35*, 57–82.

http://doi.org/10.1016/j.regsciurbeco.2003.09.001

Cables, A. P., & Elizabeth, P. (2009). Methodology, 12(2), 256–262.

Chi, X., Streicher-Porte, M., Wang, M. Y. L., & Reuter, M. A. (2011). Informal electronic

waste recycling: A sector review with special focus on China. Waste Management,

31(4), 731–742. http://doi.org/10.1016/j.wasman.2010.11.006

Grant, K., Goldizen, F. C., Sly, P. D., Brune, M.-N., Neira, M., van den Berg, M., & Norman, R.

E. (2013). Health consequences of exposure to E-waste: a systematic review. *The Lancet Global Health*, *1*(6), e350–e361. <u>http://doi.org/10.1016/S2214-109X(13)70101-3</u>

Grislain-Letrémy, C., & Katossky, A. (2014). The impact of hazardous industrial facilities on housing prices: A comparison of parametric and semiparametric hedonic price models.

Regional Science and Urban Economics, 49, 93–107.

http://doi.org/10.1016/j.regsciurbeco.2014.09.002

Hull, E. V. (2014). Poisoning the Poor for Profit: the Injustice of Exporting Electronic Waste To

Developing Countries. Duke Environmental Law & Policy Forum, 21(2008), 0-48.

Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and

serial independence of regression residuals. Economics letters, 6(3), 255-259.

Streicher-Porte, M., Widmer, R., Jain, A., Bader, H. P., Scheidegger, R., & Kytzia, S. (2005). Key drivers of the E-waste recycling system: Assessing and modelling E-waste processing in the informal sector in Delhi. *Environmental Impact Assessment Review*, 25(5 SPEC. ISS.), 472–491. <u>http://doi.org/10.1016/j.eiar.2005.04.004</u>

Tsydenova, O., & Bengtsson, M. (2011). Chemical hazards associated with treatment of

waste electrical and electronic equipment. Waste Management, 31(1), 45-58.

http://doi.org/10.1016/j.wasman.2010.08.014

Umair, S., & Anderberg, S. (2012). *Informal Electronic Waste Recycling in Pakistan*. Xu, X., Chen, X., Zhang, J., Guo, P., Fu, T., Dai, Y., ... Huo, X. (2015). Decreased blood hepatitis B surface antibody levels linked to E-waste lead exposure in preschool children. *Journal of Hazardous Materials*, 298(MAY), 122–128. <u>http://doi.org/10.1016/j.jhazmat.2015.05.020</u>